dq_init
step¶
The Data Quality (DQ) initialization step populates the DQ mask for the input dataset. Flags are obtained from the mask reference files in CRDS are copied into the PIXELDQ array of the input dataset. The PIXELDQ array flags issues with pixels such as bad pixels, hot pixels, etc.
Official documentation for dq_init
can be found here:
https://jwst-pipeline.readthedocs.io/en/latest/jwst/dq_init/index.html
Input data¶
An example of running the dq_init
step is now shown using a simple simulated observation of a galaxy with the MIRI Imager (F1130W filter) produced with MIRISim v2.3.
Python¶
Start by importing what will be used and set the CRDS_CONTEXT
# imports
import os, glob, shutil
import numpy as np
from matplotlib.colors import LogNorm
import matplotlib.pyplot as plt
from jwst import datamodels
# set the CRDS_CONTEXT
os.environ["CRDS_CONTEXT"] = "jwst_0641.pmap"
Import dq_init
and print the docstring and spec to show some information
# import the step
from jwst.dq_init import dq_init_step
# print the description and options
print(dq_init_step.DQInitStep.__doc__)
print(dq_init_step.DQInitStep.spec)
Initialize the Data Quality extension from the
mask reference file.
The dq_init step initializes the pixeldq attribute of the
input datamodel using the MASK reference file. For some
FGS exp_types, initalize the dq attribute of the input model
instead. The dq attribute of the MASK model is bitwise OR'd
with the pixeldq (or dq) attribute of the input model.
pre_hooks = string_list(default=list())
post_hooks = string_list(default=list())
output_file = output_file(default=None) # File to save output to.
output_dir = string(default=None) # Directory path for output files
output_ext = string(default='.fits') # Default type of output
output_use_model = boolean(default=False) # When saving use `DataModel.meta.filename`
output_use_index = boolean(default=True) # Append index.
save_results = boolean(default=False) # Force save results
skip = boolean(default=False) # Skip this step
suffix = string(default=None) # Default suffix for output files
search_output_file = boolean(default=True) # Use outputfile define in parent step
input_dir = string(default=None) # Input directory
Set the name of the input file and run the step. This will produce an output file ending with _dqinitstep.fits
.
Parameters used:
output_use_model
: boolean, optional, default=False
propagate the input filename to the output
save_results
: boolean, optional, default=False
save the results to file
Note that the dq_init
will return the output datamodel so we set this to the dm
variable.
# user specified
my_input_file = 'det_image_seq1_MIRIMAGE_F1130Wexp1.fits'
# run the step
dm = dq_init_step.DQInitStep.call(my_input_file, output_use_model=True, save_results=True)
2020-10-29 13:58:06,525 - stpipe - WARNING - /Users/patrickkavanagh/anaconda3/anaconda3/envs/jwst7.6/lib/python3.8/site-packages/jwst/datamodels/util.py:185: NoTypeWarning: model_type not found. Opening det_image_seq1_MIRIMAGE_F1130Wexp1.fits as a RampModel
warnings.warn(f"model_type not found. Opening {file_name} as a {class_name}",
2020-10-29 13:58:08,887 - CRDS - ERROR - Error determining best reference for 'pars-dqinitstep' = Unknown reference type 'pars-dqinitstep'
2020-10-29 13:58:08,889 - stpipe.DQInitStep - INFO - DQInitStep instance created.
2020-10-29 13:58:08,962 - stpipe.DQInitStep - INFO - Step DQInitStep running with args ('det_image_seq1_MIRIMAGE_F1130Wexp1.fits',).
2020-10-29 13:58:08,964 - stpipe.DQInitStep - INFO - Step DQInitStep parameters are: {'pre_hooks': [], 'post_hooks': [], 'output_file': None, 'output_dir': None, 'output_ext': '.fits', 'output_use_model': True, 'output_use_index': True, 'save_results': True, 'skip': False, 'suffix': None, 'search_output_file': True, 'input_dir': ''}
2020-10-29 13:58:09,218 - stpipe.DQInitStep - INFO - Using MASK reference file /Users/patrickkavanagh/crds_mirror/references/jwst/miri/jwst_miri_mask_0023.fits
2020-10-29 13:58:10,820 - stpipe.DQInitStep - INFO - Saved model in det_image_seq1_MIRIMAGE_F1130Wexp1_dqinitstep.fits
2020-10-29 13:58:10,821 - stpipe.DQInitStep - INFO - Step DQInitStep done
We can plot the science image and the PIXELDQ array, now with flags from the mask reference file. Note that if the PIXELDQ array does not exist it will be created. In the case of MIRISim data, the PIXELDQ array does already exist and the flags are already correct since these are populated by the simulator using the CDPs. In this case, the pipeline is overwriting the PIXELDQ array with the same array!
# plot the science and pixeldq arrays
fig, axs = plt.subplots(1, 2, figsize=(12, 6), sharey=True)
# show last frame of first integration
axs[0].imshow(dm.data[0,-1,:,:], cmap='jet', interpolation='nearest', origin='lower', norm=LogNorm(vmin=1.1e4,vmax=6.5e4))
axs[0].annotate('SCI', xy=(0.0, 1.02), xycoords='axes fraction', fontsize=12, fontweight='bold', color='k')
# plot the PIXEL_DQ frame
axs[1].imshow(dm.pixeldq, cmap='gray', interpolation='nearest', origin='lower', vmin=0, vmax=1)
axs[1].annotate('PIXELDQ', xy=(0.0, 1.02), xycoords='axes fraction', fontsize=12, fontweight='bold', color='k')
plt.tight_layout()
plt.show()
Command line¶
To achieve the same result from the command line there are a couple of options.
Option 1:
Run the DQInitStep
class using the strun
command:
strun jwst.dq_init.DQInitStep det_image_seq1_MIRIMAGE_F1130Wexp1.fits
Option 2:
If they don’t already exist, collect the pipeline configuration files in your working directory using collect_pipeline_configs
and then run the DQInitStep
using the strun
command with the associated dq_init.cfg
file.
collect_pipeline_cfgs cfgs/
strun cfgs/dq_init.cfg det_image_seq1_MIRIMAGE_F1130Wexp1.fits
This will produce the same output file ending with _dqinitstep.fits
A full list of the command line options are given by running the following:
strun jwst.dq_init.DQInitStep -h
or
strun cfgs/dq_init.cfg -h
Override reference file¶
To override the reference file for this step in Python:
# set the override reference file name
my_ref = 'my_mask.fits'
dm = dq_init_step.DQInitStep.call(my_input_file, output_use_model=True, save_results=True,
override_mask=my_ref)
and using the command line:
strun jwst.dq_init.DQInitStep det_image_seq1_MIRIMAGE_F1130Wexp1.fits --override_mask my_mask.fits
or
strun cfgs/dq_init.cfg det_image_seq1_MIRIMAGE_F1130Wexp1.fits --override_mask my_mask.fits